Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.
نویسندگان
چکیده
OBJECTIVES The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. BACKGROUND Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. METHODS The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. RESULTS The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). CONCLUSIONS Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis.
منابع مشابه
Turbulent kinetic energy in the ascending aorta is greater in bicuspid than tricuspid aortic valve stenosis
Background The main determinant of the haemodynamic significance of aortic stenosis (AS) is the irreversible pressure loss that is created by the stenosis. The majority of the pressure loss is caused by conversion/dissipation of turbulent kinetic energy (TKE) to heat. Recent developments in cardiac magnetic resonance 4D flow imaging have allowed the noninvasive assessment of TKE. Bicuspid aorti...
متن کاملTurbulence mapping: a new CMR approach for assessment of aortic stenosis
Background Pressure loss estimation based on the simplified Bernoulli equation frequently misclassifies the severity of aortic stenosis. Consequently, several investigators have on the basis of fluid dynamics theory derived pressure loss indices aimed at improving the clinical approach to pressure estimation [1-3]. However, CMR may offer a stronger alternative. The primary cause of pressure los...
متن کاملTurbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application
BACKGROUND Although the measurement of turbulence kinetic energy (TKE) by using magnetic resonance imaging (MRI) has been introduced as an alternative index for quantifying energy loss through the cardiac valve, experimental verification and clinical application of this parameter are still required. OBJECTIVES The goal of this study is to verify MRI measurements of TKE by using a phantom sten...
متن کاملTurbulent Kinetic Energy Assessed by Multipoint 4-Dimensional Flow Magnetic Resonance Imaging Provides Additional Information Relative to Echocardiography for the Determination of Aortic Stenosis Severity.
BACKGROUND Turbulent kinetic energy (TKE), assessed by 4-dimensional (4D) flow magnetic resonance imaging, is a measure of energy loss in disturbed flow as it occurs, for instance, in aortic stenosis (AS). This work investigates the additional information provided by quantifying TKE for the assessment of AS severity in comparison to clinical echocardiographic measures. METHODS AND RESULTS Fif...
متن کاملBlood Flow Simulation in an Aorta with a mild coarctation Using Magnetic Resonance Angiography and Finite Volume Method
Coarctation of the aorta is one of the five main congenital cardiovascular failures, accounting for 6–8 percent of these failures. This research aimed to simulate the blood flow of a seventeen-year-old male teen with a mild coarctation at one-third of his aorta's descending branch. The simulation was performed by extracting the domain and the input pulsatile velocity signal as the boundary cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JACC. Cardiovascular imaging
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2013